Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 626(7999): 626-634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326614

RESUMO

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Assuntos
Evolução Molecular , Imunoterapia Adotiva , Linfoma Cutâneo de Células T , Mutação , Linfócitos T , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Citocinas/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Imunoterapia Adotiva/métodos , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/terapia , Fosfatidilinositol 3-Quinases , Transdução de Sinais/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante
3.
Immunol Rev ; 320(1): 83-99, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491719

RESUMO

Synthetic biology (synbio) tools, such as chimeric antigen receptors (CARs), have been designed to target, activate, and improve immune cell responses to tumors. These therapies have demonstrated an ability to cure patients with blood cancers. However, there are significant challenges to designing, testing, and efficiently translating these complex cell therapies for patients who do not respond or have immune refractory solid tumors. The rapid progress of synbio tools for cell therapy, particularly for cancer immunotherapy, is encouraging but our development process should be tailored to increase translational success. Particularly, next-generation cell therapies should be rooted in basic immunology, tested in more predictive preclinical models, engineered for potency with the right balance of safety, educated by clinical findings, and multi-faceted to combat a range of suppressive mechanisms. Here, we lay out five principles for engineering future cell therapies to increase the probability of clinical impact, and in the context of these principles, we provide an overview of the current state of synbio cell therapy design for cancer. Although these principles are anchored in engineering immune cells for cancer therapy, we posit that they can help guide translational synbio research for broad impact in other disease indications with high unmet need.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Imunoterapia
4.
Immunity ; 55(7): 1284-1298.e3, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35779527

RESUMO

While studies have elucidated many pathophysiological elements of COVID-19, little is known about immunological changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune compositions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduction in immune cell signaling across cell types that accompanied disease resolution and discharge. These changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore, although patients have heterogeneous immunological baselines and highly variable disease courses, a core immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.


Assuntos
COVID-19 , Pneumonia , Progressão da Doença , Humanos , SARS-CoV-2
5.
bioRxiv ; 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35313585

RESUMO

Many studies have provided insights into the immune response to COVID-19; however, little is known about the immunological changes and immune signaling occurring during COVID-19 resolution. Individual heterogeneity and variable disease resolution timelines obscure unifying immune characteristics. Here, we collected and profiled >200 longitudinal peripheral blood samples from patients hospitalized with COVID-19, with other respiratory infections, and healthy individuals, using mass cytometry to measure immune cells and signaling states at single cell resolution. COVID-19 patients showed a unique immune composition and an early, coordinated and elevated immune cell signaling profile, which correlated with early hospital discharge. Intra-patient time course analysis tied to clinically relevant events of recovery revealed a conserved set of immunological processes that accompany, and are unique to, disease resolution and discharge. This immunological process, together with additional changes in CD4 regulatory T cells and basophils, accompanies recovery from respiratory failure and is associated with better clinical outcomes at the time of admission. Our work elucidates the biological timeline of immune recovery from COVID-19 and provides insights into the fundamental processes of COVID-19 resolution in hospitalized patients.

6.
Nat Nanotechnol ; 16(2): 214-223, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33318641

RESUMO

Biomaterials can improve the safety and presentation of therapeutic agents for effective immunotherapy, and a high level of control over surface functionalization is essential for immune cell modulation. Here, we developed biocompatible immune cell-engaging particles (ICEp) that use synthetic short DNA as scaffolds for efficient and tunable protein loading. To improve the safety of chimeric antigen receptor (CAR) T cell therapies, micrometre-sized ICEp were injected intratumorally to present a priming signal for systemically administered AND-gate CAR-T cells. Locally retained ICEp presenting a high density of priming antigens activated CAR T cells, driving local tumour clearance while sparing uninjected tumours in immunodeficient mice. The ratiometric control of costimulatory ligands (anti-CD3 and anti-CD28 antibodies) and the surface presentation of a cytokine (IL-2) on ICEp were shown to substantially impact human primary T cell activation phenotypes. This modular and versatile biomaterial functionalization platform can provide new opportunities for immunotherapies.


Assuntos
Materiais Biocompatíveis/química , DNA/química , Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Ativação Linfocitária , Camundongos , Nanopartículas/química , Neoplasias/terapia , Proteínas/química , Proteínas/imunologia , Proteínas/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante
8.
Nat Med ; 26(7): 1125-1134, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451499

RESUMO

Understanding of the factors governing immune responses in cancer remains incomplete, limiting patient benefit. In this study, we used mass cytometry to define the systemic immune landscape in response to tumor development across five tissues in eight mouse tumor models. Systemic immunity was dramatically altered across models and time, with consistent findings in the peripheral blood of patients with breast cancer. Changes in peripheral tissues differed from those in the tumor microenvironment. Mice with tumor-experienced immune systems mounted dampened responses to orthogonal challenges, including reduced T cell activation during viral or bacterial infection. Antigen-presenting cells (APCs) mounted weaker responses in this context, whereas promoting APC activation rescued T cell activity. Systemic immune changes were reversed with surgical tumor resection, and many were prevented by interleukin-1 or granulocyte colony-stimulating factor blockade, revealing remarkable plasticity in the systemic immune state. These results demonstrate that tumor development dynamically reshapes the composition and function of the immune macroenvironment.


Assuntos
Infecções Bacterianas/imunologia , Neoplasias da Mama/imunologia , Melanoma Experimental/imunologia , Microambiente Tumoral/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Ativação Linfocitária/imunologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Linfócitos T/imunologia , Microambiente Tumoral/genética
9.
Cell Stem Cell ; 25(2): 185-192.e3, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31204177

RESUMO

Hematopoietic cell transplantation can correct hematological and immunological disorders by replacing a diseased blood system with a healthy one, but this currently requires depleting a patient's existing hematopoietic system with toxic and non-specific chemotherapy, radiation, or both. Here we report an antibody-based conditioning protocol with reduced toxicity and enhanced specificity for robust hematopoietic stem cell (HSC) transplantation and engraftment in recipient mice. Host pre-treatment with six monoclonal antibodies targeting CD47, T cells, NK cells, and HSCs followed by donor HSC transplantation enabled stable hematopoietic system reconstitution in recipients with mismatches at half (haploidentical) or all major histocompatibility complex (MHC) genes. This approach allowed tolerance to heart tissue from HSC donor strains in haploidentical recipients, showing potential applications for solid organ transplantation without immune suppression. Fully mismatched chimeric mice developed antibody responses to nominal antigens, showing preserved functional immunity. These findings suggest approaches for transplanting immunologically mismatched HSCs and solid organs with limited toxicity.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Miocárdio/imunologia , Condicionamento Pré-Transplante/métodos , Aloenxertos/imunologia , Animais , Anticorpos Monoclonais , Células Cultivadas , Antígenos HLA/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Transplante de Órgãos , Quimera por Radiação , Tolerância ao Transplante , Transplante Haploidêntico , Transplante Homólogo
10.
J Cardiovasc Transl Res ; 11(4): 274-284, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29468554

RESUMO

Stromal cell-derived factor 1-alpha (SDF) is a potent bone marrow chemokine capable of recruiting circulating progenitor populations to injured tissue. SDF has known angiogenic capabilities, but bone marrow-derived cellular contributions to tissue regeneration remain controversial. Bone marrow from DsRed-transgenic donors was transplanted into recipients to lineage-trace circulating cells after myocardial infarction (MI). SDF was delivered post-MI, and hearts were evaluated for recruitment and plasticity of bone marrow-derived populations. SDF treatment improved ventricular function, border zone vessel density, and CD31+ cell frequency post-MI. Bone marrow-derived endothelial cells were observed; these cells arose through both cell fusion and transdifferentiation. Circulating cells also adopted cardiomyocyte fates, but such events were exceedingly rare and almost exclusively resulted from cell fusion. SDF did not significantly alter the proportion of circulating cells that adopted non-hematopoietic fates. Mechanistic insight into the governance of circulating cells is essential to realizing the full potential of cytokine therapies.


Assuntos
Quimiocina CXCL12/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Transplante de Medula Óssea , Diferenciação Celular , Células Cultivadas , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/patologia , Função Ventricular Esquerda
11.
Blood ; 123(18): 2882-92, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591203

RESUMO

Total lymphoid irradiation (TLI) with antithymocyte globulin (ATG) is a unique regimen that prepares recipients for allogeneic hematopoietic cell transplantation by targeting lymph nodes, while sparing large areas of the bone marrow. TLI is reported to increase the frequency of CD4(+)CD25(+)FoxP3(+) T-regulatory cells (Treg) relative to conventional T cells. In this study, barriers to hematopoietic stem cell (HSC) engraftment following this nonmyeloablative conditioning were evaluated. TLI/ATG resulted in profound lymphoablation but endogenous host HSC remained. Initial donor HSC engraftment occurred only in radiation exposed marrow sites, but gradually distributed to bone marrow outside the radiation field. Sustained donor engraftment required host lymphoid cells insofar as lymphocyte deficient Rag2γc(-/-) recipients had unstable engraftment compared with wild-type. TLI/ATG treated wild-type recipients had increased proportions of Treg that were associated with increased HSC frequency and proliferation. In contrast, Rag2γc(-/-) recipients who lacked Treg did not. Adoptive transfer of Treg into Rag2γc(-/-) recipients resulted in increased cell cycling of endogenous HSC. Thus, we hypothesize that Treg influence donor engraftment post-TLI/ATG by increasing HSC cell cycling, thereby promoting the exit of host HSC from the marrow niche. Our study highlights the unique dynamics of donor hematopoiesis following TLI/ATG, and the effect of Treg on HSC activity.


Assuntos
Sobrevivência de Enxerto/imunologia , Hematopoese/imunologia , Linfócitos T Reguladores/imunologia , Condicionamento Pré-Transplante/métodos , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/efeitos da radiação , Sobrevivência de Enxerto/genética , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/efeitos da radiação , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/metabolismo , Doadores de Tecidos , Quimeras de Transplante , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...